Stability of Inertial Neural Network with Time-Varying Delays Via Sampled-Data Control

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays

In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...

متن کامل

FINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS

This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...

متن کامل

Stability of Neural Network Control for Uncertain Sampled-Data Systems

This paper derives robust stability conditions for neural network control of sampled-data systems whose parameters are uncertain. The controllers are nonlinear, full state regulators implemented as single hidden layer, feedforward neural networks. The controlled systems must be locally controllable and full-state accessible. The robust stability is confirmed by the existence of a Lyapunov funct...

متن کامل

Stability of Impulsive Cellular Neural Networks with Time-varying Delays

The problems of exponential stability and exponential convergence rate for a class of impulsive cellular neural networks with time-varying delays are studied. By means of the Lyapunov stability theory and discrete-time Halanay-type inequality technique, stability criteria for ensuring global exponential stability of noimpulsive discrete-time cellular neural networks and impulsive discrete-time ...

متن کامل

Stability analysis of neural networks with interval time-varying delays.

The global exponential stability is investigated for neural networks with interval time-varying delays. Based on the Leibniz-Newton formula and linear matrix inequality technique, delay-dependent stability criteria are proposed to guarantee the exponential stability of neural networks with interval time-varying delays. Some numerical examples and comparisons are provided to show that the propos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neural Processing Letters

سال: 2018

ISSN: 1370-4621,1573-773X

DOI: 10.1007/s11063-018-9905-6